

SimBuild

2024

Eleventh National Conference of IBPSA-USA

Denver, Colorado

May 21 – 23, 2024

Advancing Building Energy Modeling with Large Language Models:

Exploration and Case Studies

Liang Zhang1,2, Zhelun Chen3, Vitaly Ford4, Peng Xu5
1University of Arizona, Tucson, AZ

2National Renewable Energy Laboratory, Golden, CO
3Drexel University, Philadelphia, PA

4Acadia University, Glenside, PA
5Tongji University, Shanghai, China

Abstract

The rapid progression in artificial intelligence has

facilitated the emergence of Large Language Models

(LLMs) like ChatGPT, offering potential applications

extending into building energy modeling (BEM). This

paper investigates the innovative integration of LLMs

with BEM tools, focusing specifically on the fusion of

ChatGPT with EnergyPlus. A literature review reveals a

growing trend of incorporating LLMs in engineering

modeling, albeit limited research on their application in

BEM. We underscore the potential of LLMs in

addressing BEM's challenges and outline potential

applications such as input generation. Through case

studies, we demonstrate the transformative potential of

LLMs in revolutionizing the BEM lifecycle.

Introduction

Buildings are significant contributors to global energy

consumption and carbon emissions, responsible for

approximately 30% of the world's energy use and 26%

of CO2 emissions (IEA 2023). Buildings represent a

critical sector in the global pursuit of decarbonization

and reduction of greenhouse gas emissions (Xiang, Ma

et al. 2022). Building Energy Modeling (BEM) plays a

pivotal role in this endeavor. BEM is a computational

technique that uses algorithms to simulate and predict the

energy consumption of buildings based on various

parameters, such as architectural design, materials,

operational schedules, and local climate. It serves as a

powerful tool for architects, engineers, and

policymakers, aiding in the design and operation of

energy-efficient buildings, as well as in the formulation

of effective building codes and standards. By optimizing

energy use and implementing renewable energy systems,

BEM facilitates the path to building decarbonization.

BEM, at its core, is a highly technical and specialized

discipline, steeped in a need for extensive knowledge

and experience. This necessity stems from the

multifaceted and interconnected nature of building

science and the diverse range of systems that underpin a

building's operations, particularly in the field of heating,

ventilation, and air conditioning (HVAC). Users of BEM

must understand the fundamentals of these systems, as

well as the principles of physics that govern their

interactions, in order to accurately capture building

characteristics and thus correctly model its energy

consumption. This deep understanding needs to be

paired with proficiency in specific BEM software. Each

of these software packages comes with its own nuances,

language, and operational complexities. Mastering these

tools demands a significant investment of time and

effort, often deterring those who lack the necessary

background or resources from effectively leveraging

BEM in their work. Furthermore, the sophistication of

modern buildings, equipped with complex mechanical

systems and novel materials, adds to the challenges faced

by BEM practitioners. Buildings are no longer

standalone entities but parts of broader energy networks,

connected to other buildings and infrastructures. This

expanded scope, coupled with an ever-increasing push

for sustainability, means that users of BEM now must

possess an even more diversified range of expertise,

from understanding emerging technologies to

interpreting complex regulations and codes. All these

factors make BEM an expertise-intensive area, requiring

a deep and broad knowledge base that spans multiple

disciplines, making it an intricate field to navigate for

newcomers and even some experienced professionals.

The rapid progression in the field of artificial intelligence

(AI) has facilitated the emergence of Large Language

Models (LLMs) like ChatGPT, offering potential

applications extending into the realm of BEM. The

integration of LLMs in BEM holds significant potential

due to its transformative impact on human-machine

interactions. Traditionally, user engagement with

complex machinery or systems, like BEM software, has

been constrained by a steep learning curve and the need

for specialist knowledge. However, LLMs, with their

ability to comprehend and generate reasonable natural

language, can significantly streamline these interactions,

making them more accessible and intuitive. LLMs

essentially serve as an interface, allowing users to

communicate with the BEM software using natural

language. This drastically lowers the technical barrier,

enabling those without specialist knowledge to interact

with BEM systems. For instance, a user could instruct

the system to modify certain parameters or request an

interpretation of the simulation results in simple,

everyday language, and the LLM can translate these

instructions into actions or provide explanations.

Moreover, LLMs are not limited to merely simplifying

interactions; they can also contribute to knowledge

enhancement. Given their vast training data

encompassing various topics, LLMs can offer valuable

insights, explanations, or suggest best practices related

to BEM. They can potentially serve as an intelligent

assistant, guiding users through complex BEM tasks,

enhancing their understanding, and helping them make

informed decisions. This shift in how users interact with

BEM tools could democratize access to these systems,

broadening their application and thus contributing more

effectively to decarbonization goals.

In order to explore this topic of how we can advance

BEM with LLM, we first review the development and

characteristics of LLM and its application in facilitating

the usage of specialized and professional software; then

we summarize the promising applications of LLMs in

BEM. Then, we design preliminary case studies to

demonstrate the effectiveness of potential LLM

applications in BEM. In the final sections, we discuss the

results of the case studies and conclude with an outlook

on future trends and developments in the application of

LLMs in BEM.

LLM in Engineering Modeling and BEM

At the point of writing the paper, we found few papers

discussing the topic of LLM in BEM. To understand the

existing work that can benefit this particular topic, we

review the papers from a broader perspective. Since

BEM is a type of interaction between humans and

software requiring expert knowledge, it is worth

investigating how LLM has already helped with

benefiting the usage of specialized and professional

software-based modeling requiring expert knowledge.

User-Friendly Interfaces

LLMs can provide a conversational interface to interact

with complex software, simplifying the user experience.

For instance, they can enable users to perform tasks

using natural language commands, rather than having to

navigate complicated menus or learn specific

programming languages. Brown et al. (Brown, Mann et

al. 2020) demonstrated how GPT-3, an LLM, can

understand and respond to natural language prompts,

which could be applied to create more user-friendly

interfaces.

In BEM, a user-friendly interface is crucial for ease of

use. Consider EnergyPlus (Crawley, Lawrie et al. 2001),

where all the user interfaces (e.g., OpenStudio,

DesignBuilder, and Ladybug Tools) are graphical user

interfaces. However, the forms of interface should not be

limited. A well-designed interface empowers BEM users

to easily express their modeling needs and receive

simulation results in a manner that is most direct and

comprehensible, making the natural-language-based

user interface a promising field. Currently, there is a lack

of such interfaces in BEM, and we posit that their

integration into software tools would substantially

enhance workflow efficiency.

Code Generation

LLMs have the capability to comprehend programming

languages and generate code snippets from natural

language prompts. GitHub Copilot

(https://github.com/features/copilot), a collaborative

effort between GitHub and OpenAI, serves as an AI pair

programmer, offering code suggestions while developers

write, thus accelerating the coding process, reducing

error potential, and offering a learning resource.

LLMs can further automate data and modeling workflow

through code generation capabilities. This allows LLM

to automate complex processes by coordinating tasks

across various software tools. They can interpret

instructions given in natural language, create the

required commands or scripts, and then perform or

arrange the tasks as needed. Many LLM-based tools

(e.g., AutoGen (Wu, Bansal et al. 2023) and MetaGPT

(Hong, Zheng et al. 2023)) have already proven their

ability in LLM-based workflow automation. In data-

intensive fields, LLMs can automate tasks such as data

cleaning, preprocessing, analysis, and visualization.

They can understand high-level descriptions of the

desired data transformations or analyses, generate the

necessary code, and provide the results in a user-friendly

format.

The automation of simulation tasks is a very important

branch of BEM. Currently, the most widely used BEM

automation methodology is OpenStudio Measure (Roth,

Goldwasser et al. 2016). OpenStudio Measures are Ruby

scripts that extend OpenStudio's functionality, enabling

users to customize energy models, implement energy-

saving strategies, and automate tasks in a collaborative

platform. However, the development of OpenStudio

Measure has a very high requirement for the skills of

Ruby programming language, OpenStudio, EnergyPlus,

as well as knowledge in building science and building

equipment. LLM has great potential to further “automate

the automation” by auto-generating Ruby scripts. It will

https://github.com/features/copilot

bring the automation of BEM to the next level from data

collection, model generation, and simulation results

reporting.

The LLM has proven to be highly effective in workflow

automation, seamlessly orchestrating tasks across a

diverse range of software tools. This capability makes it

an ideal candidate for BEM co-simulation tasks. BEM

co-simulations require the integration of multiple

software tools and models to meticulously simulate and

analyze a building's energy performance, considering a

multitude of factors including HVAC systems, weather

conditions, occupant behavior, and the characteristics of

the building envelope. The expertise of the LLM in code

generation, workflow automation, and data processing

positions it as a valuable asset in streamlining and

enhancing the efficiency of BEM automation processes.

Documentations, Tutorials, and Training

Documentations, tutorials, and training play a crucial

role in the effective and efficient use of any professional

software. They serve as the first point of contact for new

users and a reference guide for experienced ones. In the

past, these resources were static and sometimes difficult

to comprehend, especially for complex software.

However, the advent of LLM is ushering in a new era of

intelligent, dynamic, and interactive user assistance. One

of the most exciting capabilities of LLMs is their ability

to generate and reorganize content in a way that makes it

more accessible and user-friendly. LLMs can produce

well-structured documentation, interactive tutorials, and

step-by-step guides in real-time, tailored to the specific

needs of the user. For instance, an LLM could produce a

beginner's guide to a complex data analysis software by

generating explanations and examples in plain language,

or generate a more advanced tutorial focusing on a

particular feature or use case based on the user's specific

query.

In addition, LLMs also offer real-time support by

answering specific questions about software features.

Rather than having to sift through a FAQ page or search

for a relevant tutorial or question-and-answer forum,

users can simply ask the LLM their question in natural

language. The LLM can understand the query, find the

most relevant information, and generate a helpful

response. This kind of interactive, on-demand assistance

can significantly reduce the learning curve associated

with complex software, making it more accessible to a

broader range of users.

MacNeil et al. (MacNeil, Tran et al. 2023) reported on

their experiences generating multiple code explanation

types using LLMs and integrating them into an

interactive e-book on web software development. Three

different types of explanations – a line-by-line

explanation, a list of important concepts, and a high-level

summary of the code – were created. Their results show

that all explanation types were viewed by students and

that the majority of students perceived the code

explanations as helpful to them. Su et al. (Su, Wan et al.

2023) explores the question of how to make software

documentation more useful with an LLM. They

investigate a general, one-model-fit-all solution through

a state-of-the-art LLM (ChatGPT). The paper covers

three representative tasks: extracting locking rules from

comments, synthesizing exception predicates from

comments, and identifying performance-related

configurations; it also reveals challenges and

opportunities in applying LLMs to system maintenance.

Error Identification and Troubleshooting

Error identification and troubleshooting have

traditionally been complex processes, requiring

specialized knowledge and experience. However, the

incorporation of LLM into these systems is transforming

how these tasks are performed, making them more

efficient and accessible to a broader range of users.

LLMs can assist in identifying and troubleshooting

errors by interpreting descriptions of issues provided by

the users. This involves natural language processing

capabilities that allow the AI to understand the user's

language, including technical terms and even colloquial

or less precise descriptions of problems. The LLMs can

then match these descriptions with known errors or

issues, helping to pinpoint what may be going wrong.

One of the main benefits of using LLMs in error

identification is that they can significantly reduce the

time taken to understand and diagnose the problem. For

example, if a user encounters a software crash, they

could describe the issue to the LLM, which would then

process this description, correlate it with known bugs or

issues, and suggest possible causes for the crash. In terms

of troubleshooting, LLMs can provide step-by-step

guidance to resolve the identified issues. Based on the

identified error, the LLM can generate a list of potential

solutions, ordered by their likelihood of success or ease

of implementation. This could range from simple

solutions like restarting the software to more complex

procedures such as modifying specific settings or

running certain commands. In each case, the LLM can

provide clear, easy-to-follow instructions, making it

easier for non-expert users to resolve issues on their own.

Moreover, LLMs can learn from each interaction,

thereby enhancing their ability to handle similar issues

in the future. This capability allows them to become

more effective over time, ultimately improving the

efficiency of the troubleshooting process. This

debugging process can also be automated and integrated

within the software's operational cycle, allowing the

system to self-correct iteratively until it operates without

faults, thus streamlining the modeling process and

enhancing system reliability. Overall, the use of LLMs

in error identification and troubleshooting represents a

significant leap forward. By enabling rapid diagnosis

and resolution of software issues, they not only enhance

the user experience but also increase the overall

efficiency and reliability of software systems.

Most commercial LLM tools are available for general

error identification and troubleshooting. For instance,

ChatGPT can assist with debugging by pinpointing and

clarifying common errors like syntax or logical mistakes.

Unfortunately, similar tools specifically designed for

professional software are currently lacking.

In the context of BEM, error identification and

troubleshooting have traditionally been complex

processes, especially for expert-knowledge-dependent

software such as EnergyPlus. Users often have to sift

through dense technical documentation or rely on trial-

and-error methods to identify and rectify issues, which

can be time-consuming and inefficient. However, with

the introduction of LLMs, these processes could be

significantly streamlined and enhanced.

Potential Applications of LLM in BEM

In this sub-section, we further summarize the advances

and advantages of LLMs in the context of the key

challenges in BEM, especially its heavy dependency on

expert knowledge. We explore and propose several

potential applications of LLMs with case studies to

enhance and streamline the BEM process.

Simulation Input Generation

Defining simulation input is a foundational step in BEM,

where detailed parameters such as building geometry,

material properties, HVAC system configurations,

occupancy patterns, and local climate data are defined to

represent a building’s characteristics for energy

modeling. LLMs, equipped with vast knowledge bases

and adept natural language processing capabilities, are

uniquely positioned to streamline this intricate process.

For instance, a user might describe a building’s façade as

“mostly glass with southern exposure.” An LLM,

through prompt engineering, can interpret this to

generate specific parameters like window-to-wall ratio,

glazing type, and solar heat gain coefficients. An LLM

can then adeptly transform these descriptions into a

structured input format, meticulously populating a BEM

input file, such as the Input Data Dictionary (IDD) for

EnergyPlus, ensuring all parameters align with the

template’s requirements. In summary, LLMs

significantly enhance the efficiency of setting up BEM

by translating natural descriptions into precise

simulation inputs, ensuring accurate and streamlined

energy analysis.

Simulation Output Analysis and Visualization

BEM has structured simulation output format, which is

very suitable to be processed by LLM with its ability of

code generation to automatically conduct data analysis,

modeling, and visualization. Besides, the unique

challenges of BEM outputs demand more specialized

solutions. LLMs, equipped with capabilities of context-

aware data interpretation, can not only contribute to data

automation but also assist in offering deeper insights and

extracting meaningful knowledge from vast simulation

datasets. For instance, when analyzing a spike in energy

consumption, an LLM might correlate it with specific

HVAC activities during peak occupancy hours, offering

a nuanced understanding.

Conducting Error Analysis

As simulations grow in complexity, the potential for

errors increases, and these errors can manifest in various

ways. Some errors, due to violations of basic model

assumptions or misconfigurations, can cause the

simulation to fail outright. For instance, specifying an

impossible combination of materials or an HVAC

system operating outside its feasible range might halt an

EnergyPlus simulation before it even begins. On the

other hand, subtler errors might not stop the simulation

but can lead to anomalous results. An incorrectly defined

occupancy schedule or a misconfigured shading device

might not prevent the simulation from running but could

result in unexpected energy consumption spikes or

temperature fluctuations.

LLMs can assist in pinpointing and elucidating these

errors. For a complete simulation failure, an LLM might

trace the issue to a specific input violation. For

anomalous results, it might highlight potential

inconsistencies or misconfigurations that led to the

unexpected behavior.

While LLMs can identify and explain many known

errors, novel or unprecedented issues might be harder to

diagnose. The vast array of potential BEM errors, each

with its unique characteristics, makes error analysis in

tools like EnergyPlus a nuanced task. Continuous fine

tuning of the LLM on the latest BEM datasets and

updates is essential. For instance, EnergyPlus has a rich

ecosystem of resources like the Engineering Reference,

the Input Output Reference, and community forums. An

LLM can be trained on these resources to enhance its

diagnostic capabilities. When a user encounters an error,

the LLM can cross-reference the user's description with

known issues from these resources, provide relevant

excerpts from user documents, or even suggest similar

cases discussed in community forums. Integrating user

feedback loops enables LLM to learn from its misses,

refining its diagnostic capabilities over time. However,

integrating user feedback loops, while beneficial,

presents challenges such as ensuring the credibility of

user feedback, especially when it is not entirely accurate.

Co-Simulation

Co-simulation in BEM involves the concurrent use of

multiple simulation tools, each specialized in a particular

domain, to provide a comprehensive analysis of a

building's energy performance. For instance, while

EnergyPlus might be used to simulate the overall energy

consumption of a building, a separate tool might be

employed to model occupant behaviors based on the

simulated building environment (Chen, Li et al. 2023)

(Zhang, Haroon et al.).

The integration of LLMs in co-simulation processes can

streamline the coordination between these tools. LLMs

can potentially understand the intricacies of each tool

and ensure that data is seamlessly transferred and

interpreted across platforms.

However, challenges arise in co-simulation. Ensuring

real-time synchronization between different tools,

managing data consistency, and handling potential

conflicts in overlapping domains are all intricate tasks.

Additionally, the sheer diversity of tools, each with its

own set of assumptions, parameters, and output formats,

can complicate the integration process.

Simulation Knowledge Extraction and Training

Efficient and comprehensive documentation and training

pose a significant challenge in BEM. Consider

EnergyPlus as an instance; federal agencies, professional

organizations, and companies have invested substantial

efforts to create helpful resources. However, most

training and tutorials of EnergyPlus limited to the form

of 1) static and web-based documentation, 2) online and

offline training sessions, 3) question-and-answer site,

and 4) online encyclopedia. Since LLMs are

revolutionizing how we understand and interact with the

documentation and the tutorials of expert software

through their ability to generate, reorganize, and present

information in an intelligent and user-friendly manner,

they are not only simplifying the use of complex

software but also enhancing the learning experience for

users of all levels. The result is to provide a more

inclusive, efficient, and effective learning and

documenting experience for BEM. Besides, through the

fast-developing BEM technologies, the topic of an up-

to-date knowledge is extremely relevant and important.

LLMs can stay updated with new knowledge, so they can

always provide accurate information and support,

something that static documentation can struggle with.

Simulation Optimization

Optimizing a building's energy performance is a

multifaceted endeavor, drawing heavily on the processes

detailed in earlier sections. At its core, optimization

refines the myriad parameters that define a building's

energy model to achieve the best possible outcomes.

For instance, while Section Simulation Input Generation

discussed how an LLM can assist users in defining

parameters based on their descriptions, in the context of

optimization, the LLM's role shifts slightly. Using the

building's façade example, instead of merely interpreting

a user's description, the LLM might proactively suggest

specific parameters, such as window-to-wall ratio,

glazing type, or solar heat gain coefficients, to optimize.

These suggestions would be informed by a combination

of factors: extensive datasets of similar building

configurations and their performance metrics, best

practices in architectural and engineering design,

historical trends in energy consumption, predictive

models of future energy needs, and even feedback loops

from real-world building performance post-occupancy.

Ultimately, the goal of simulation optimization is to

harmonize energy efficiency with building functionality

and occupant comfort or well-being. While LLMs can

provide invaluable data-driven insights and suggestions,

the intricate nuances of building design, occupant

behaviors, and real-world conditions underscore the

irreplaceable value of human judgment in the decision-

making process.

As we transition into the case studies, it is essential to

emphasize that LLMs are tools designed to augment our

expertise, not replace it. Their role is to assist and

enhance, while the final decisions and creative insights

remain inherently human.

Case Studies

In this section, we design three case studies to

demonstrate the effectiveness of potential LLM

applications in BEM. In conducting our case studies, we

employ three key methodologies harnessing the

capabilities of LLMs: 1) prompt engineering, 2) multi-

agent LLMs, and 3) retrieval augmented generation

(RAG). The prompt engineering method revolves around

carefully crafting prompts or instructions to guide the

LLM in executing desired tasks. This method capitalizes

on the LLM's ability to interpret and respond to natural

language prompts without requiring specific model

alterations. It involves a deep understanding of how the

model processes and responds to different types of

prompts, and leveraging this understanding to generate

accurate and effective outcomes. On the other hand,

multi-agent LLMs incorporate multiple LLMs working

collaboratively to solve complex problems or perform

intricate tasks. This approach capitalizes on the

collective intelligence and diverse capabilities of

multiple LLMs, allowing for more comprehensive and

nuanced problem-solving. Both these methodologies

offer unique advantages and can be leveraged according

to the specific requirements of the task at hand. While

the prompt Engineering method can be utilized quickly

and efficiently, the multi-agent LLMs offer superior

performance for tasks that demand a combination of

specialized knowledge, creativity, and collaborative

decision-making, providing a robust solution that often

surpasses the capabilities of a single LLM. Lastly, RAG

uses the model's advanced natural language processing

capabilities to perform in-depth searches, extracting

contextually relevant information from vast datasets.

This approach is crucial for BEM tasks that require a

comprehensive understanding of complex subject matter

and the synthesis of data from multiple sources to

produce informed and precise conclusions.

Simulation Input Generation

In this section, we will apply LLM and its relevant

techniques to generate and modify Input Data File (IDF)

objects and files as the input of EnergyPlus.

Single Object Generation

We first use LLM to generate a people object by telling

the LLM that “Generate a ‘People’ object for me. I want

it to be defined by ‘Number of People’ which is set to 10,

and set other field values either default or blank.” We

first directly send this request to LLM without prompt

engineering, and the output is shown below. In this

section, we use ChatGPT-4 July 6, 2023, Version.

People,

 People_1, !- Name

 , !- Zone or ZoneList Name

 , !- Number of People Schedule Name

 , !- Number of People Calculation Method

 10, !- Number of People

 , !- People per Zone Floor Area (person/m2)

 , !- Zone Floor Area per Person (m2/person)

 0.3, !- Fraction Radiant

 AUTOCALCULATE, !- Sensible Heat Fraction

 Activity Level Schedule Name, !- Activity

Level Schedule Name

 3.82E-8, !- Carbon Dioxide Generation Rate

(m3/s-W)

 Yes, !- Enable ASHRAE 55 Comfort Warnings

 ZoneAveraged, !- Mean Radiant Temperature

Calculation Type

 , !- Surface Name/Angle Factor List Name

 Work efficiency schedule name, !- Work

Efficiency Schedule Name

 Clothing insulation schedule name, !- Clothing

Insulation Calculation Method Schedule Name

 , !- Clothing Insulation Schedule Name

 , !- Air Velocity Schedule Name

 , !- Thermal Comfort Model 1 Type

 , !- Thermal Comfort Model 2 Type

 , !- Thermal Comfort Model 3 Type

 , !- Thermal Comfort Model 4 Type

 , !- Thermal Comfort Model 5 Type

 , !- Thermal Comfort Model 6 Type

 , !- Thermal Comfort Model 7 Type

The generated people object is partially correct. It can be

seen that the key field “Number of People Calculation

Method” is left blank, meaning that LLM does not

capture the people calculation method from the prompt.

Besides, the value of “Enable ASHRAE 55 Comfort

Warnings” is “yes” instead of “no” (default value),

which is against the requirement in the prompt.

We try to use prompt engineering to improve the

accuracy of the object generated. We designed a prompt

engineering script shown as below.

Set the temperature to 0

The user wants to automatically generate text-

based idf objects for EnergyPlus Simulation. The

format of a certain type of object called

"People" is provided in triple back-ticks.

Here is the users' prompt below:

"Generate a "People" object for me. I want the

people object to be defined by "Number of

People" which is set to 10, and make other fields

value to be either default or blank. "

Some general rules when generating the object:

- If the field is not mandatory and is not

defined by the user, please do not put a value

in the field.

- If the field is mandatory but not defined by

the user, please set it to "TBD" + a 10-digit

random number

- Even though some fields are optional or not

defined by the user, keep them in the object

definition.

- In the object generated, comment after "!" for

each field about why the value is set or is left

blank

- If the rules above conflict with the users'

prompt, prioritize the rules here and inform the

user there is a conflict

In the end after the object is generated, tell

the user:

- Which fields are set by user

- Which fields are mandatory but not defined

- Which fields are set to their default values

- Which fields are left blank

``` 

People, 

\memo Sets internal gains and contaminant rates 

for occupants in the zone. 

\memo If a ZoneList, SpaceList, or a Zone 

comprised of more than one Space is specified 

\memo then this definition applies to all 

applicable spaces, and each instance will 

\memo be named with the Space Name plus this 

Object Name. 

\min-fields 10 

! \field Name 

…(full IDD file omitted because of the word 

limit) 

``` 

In the first paragraph, we define “temperature” as a

parameter that controls the randomness of LLM's output,

with a range from 0 to 1. A lower temperature results in

more deterministic responses, essential for rule-based

tasks such as EnergyPlus object creation. Therefore, we

set the temperature to 0. In the second paragraph, we

provide ground truth to the task by referring to the IDD

file. EnergyPlus object is defined by the IDD file, which

provides the structure and format of input data required

by the simulation program. The third paragraph provide

a placeholder for the user’s request, in this case, to

generate a people object with 10 people. The fourth

paragraph defines the rules for object generation to (1)

guarantee the object aligns precisely with user-defined

information and (2) prevent syntax errors by ensuring all

obligatory fields are accounted for. Furthermore, we

instruct the LLM to annotate field values with comments

elucidating the rationale behind its decisions, thereby

providing modelers with a transparent view of the LLM's

decision-making process.

The output with prompt engineering is shown below.

The output format is correct and the values in all fields

follow the rules we defined in the prompt template.

People,

 TBD1234567890, !- Name - Mandatory but not

defined by user, so set to "TBD"

 TBD2345678901, !- Zone or ZoneList or Space

or SpaceList Name - Mandatory but not defined

 TBD3456789012, !- Number of People Schedule

Name - Mandatory but not defined

 People, !- Number of People Calculation Method

- Default value used as it's not defined by user

 10, !- Number of People - Defined by user

 , !- People per Floor Area - Not mandatory and

not defined by user, so left blank

 , !- Floor Area per Person - Not mandatory and

not defined by user, so left blank

 0.3, !- Fraction Radiant - Default value used

as it's not defined by user

 AUTOCALCULATE, !- Sensible Heat Fraction -

Default value used as it's not defined by user

 TBD4567890123, !- Activity Level Schedule Name

- Mandatory but not defined

 3.82E-8, !- Carbon Dioxide Generation Rate -

Default value used as it's not defined by user

 No, !- Enable ASHRAE 55 Comfort Warnings -

Default value used as it's not defined by user

 ZoneAveraged, !- Mean Radiant Temperature

Calculation Type - Default value used as it's

not defined by user

 , !- Surface Name/Angle Factor List Name - Not

mandatory and not defined by user

 , !- Work Efficiency Schedule Name - Not

mandatory and not defined by user

 ClothingInsulationSchedule, !- Clothing

Insulation Calculation Method - Default value

used as it's not defined by user

 , !- Clothing Insulation Schedule Name - Not

mandatory and not defined by user

 , !- Air Velocity Schedule Name - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 1 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 2 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 3 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 4 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 5 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 6 Type - Not

mandatory and not defined by user, so left blank

 , !- Thermal Comfort Model 7 Type - Not

mandatory and not defined by user, so left blank

 , !- Ankle Level Air Velocity Schedule Name -

Not mandatory and not defined by user, blank

 15.6, !- Cold Stress Temperature Threshold -

Default value used as it's not defined by user

 30, !- Heat Stress Temperature Threshold -

Default value used as it's not defined by user

Besides, the reasoning behind the value is also correctly

explained in the comments and in the generated

explanation texts shown below. The accuracy of the

output is obviously improved compared with that

without prompt engineering. After filling TBD values

with actual values, it can be run in EnergyPlus without

any error.

Here's a summary:

Fields set by user: "Number of People"

Mandatory fields not defined: "Name", "Zone or

ZoneList or Space or SpaceList Name", "Number

of People Schedule Name", "Activity Level

Schedule Name"

Fields set to default values: "Number of People

Calculation Method", "Fraction Radiant",

"Sensible Heat Fraction", "Carbon Dioxide

Generation Rate", "Enable ASHRAE 55 Comfort

Warnings", "Mean Radiant Temperature

Calculation Type", "Clothing Insulation

Calculation Method", "Cold Stress Temperature

Threshold", "Heat Stress Temperature Threshold"

Fields left blank: "People per Floor Area",

"Floor Area per Person", "Surface Name/Angle

Factor List Name", "Work Efficiency Schedule

Name", "Clothing Insulation Calculation Method

Schedule Name", "Clothing Insulation Schedule

Name", "Air Velocity Schedule Name", "Thermal

Comfort Model 1 Type", "Thermal Comfort Model 2

Type", "Thermal Comfort Model 3 Type", "Thermal

Comfort Model 4 Type", "Thermal Comfort Model 5

Type", "Thermal Comfort Model 6 Type", "Thermal

Comfort Model 7 Type", "Ankle Level Air Velocity

Schedule Name"

Although not explored in this paper, we can further add

different types of improvements to the prompt, e.g.,

"assume the role of the best assistant in IDF object

generation”, “reason step-by-step and logically at all

times”, “review generated output in terms of errors and

fix them”, and “iteratively improve output until it is

correct and complete” (White, Fu et al. 2023). Many

papers (Bsharat, Myrzakhan et al. 2023) discuss novel

prompt engineering techniques which can be future work

to further improve the input generation performance.

In summary, we observed the necessity of prompt

engineering in creating a specific EnergyPlus object

based on natural language input. In terms of the time

spent on object creation, the user takes less than a minute

to write a prompt in the placeholder of the prompt

template we designed in LLM; furthermore, the user

does not need the expertise in the IDF object.

Whole IDF Modification

We will further investigate whether LLM can deal with

the complete IDF file in this section. Since the generation

of a complete IDF file requires too much information

using the natural language input, we just focus on

revising the existing IDF based on user’s requirements

in the case study.

We will use multi-agent LLM techniques. The diagram

is shown in Figure 1. It consists of a central LLM agent

and several LLM task agents. Central LLM agent

communicates with the user, plans sub-tasks, assigns

sub-tasks to specialized LLM task agents, aggregates the

results from LLM task agents, and sends results to users.

Figure 1. Multi-agent LLMs for IDF modification

The central LLM agent is based on the GPT-4 Advanced

Data Analysis plugin (September 25, 2023, Version),

which supports the upload of complete idf files. The

central LLM agent is based on the following prompt

template.

You are the central LLM agent in a multi-agent

LLMs used to modify idf files based on user’s

input. Here are your tasks:

1. Ask for idf files and the modification

requirement from user.

2. Based on the user’s input, identify the

relevant objects and extract them as texts.

3. Send objects in the form of text to the

correspondent LLM task agents.

4. Wait for the feedbacks from all agents

5. Aggregate the feedback, correct object

reference, and generate a modified idf file and

send it to user.

The LLM task agents are in the similar structure with the

engineered prompt template for people object creation.

The only two differences are 1) the placeholder gets

input from the central LLM agent, and 2) adding an extra

step to return the results to LLM central agent.

All agents are defined, coordinated, and connected

through AutoGen framework (Wu, Bansal et al. 2023).

Microsoft's Autogen is a platform engineered to propel

the creation of LLM applications by facilitating multi-

agent dialogues. It allows diverse agents to engage in

discussions with each other to address tasks, with the

agents being adaptable, capable of conversation, and

structured to effortlessly accommodate human

involvement across different modes utilizing blends of

LLMs, human contributions, and tools.

In the case study, we use a simplified IDF file from

EnergyPlus official document InterfaceDeveloper.pdf

Appendix A. Simple IDF file as a starting point. The

user’s request is shown as follows.

Here is the idf file and I want to 1) create a

people object for the only zone, 2) add a

schedule for exterior lights that starts at 6:00

PM and ends at 6:00 AM, and 3) change the R13

layer to be R15.

Below is the excerpt from the generated IDF file. Due to

the page limit, we only show schedule and construction

since the people object is already shown in 3.1.1.

Schedule:Compact,

 NewSchedule, !- Name

 Fraction, !- Schedule Type Limits

 Through: 12/31, !- Field 1

 For: AllDays, !- Field 2

 Until: 06:00,0, !- Field 3

 Until: 18:00,1, !- Field 4

 Until: 24:00,0; !- Field 5

…

Exterior:Lights,

 ExtLights, !- Name

 NewSchedule, !- Schedule Name

 5250, !- Design Level {W}

 AstronomicalClock, !- Control Option

 Grounds Lights; !- End -Use Subcategory

…

Material:NoMass,

 R13LAYER, !- Name

 Rough, !- Roughness

 2.64, !- ThermalResistance{m2K/W}

 0.9000000, !- Thermal Absorptance

 0.7500000, !- Solar Absorptance

 0.7500000; !- Visible Absorptance

In terms of construction material, although it is still

called R13Layer, the thermal resistance is updated from

2.29 to 2.64 m2K/W (R15), which correctly reflect user

input. For exterior lighting, the new schedule is correctly

created and successfully applied in exterior lights. We

observed the effectiveness of multi-agent LLM

applications in multiple inputs generation and revisions

for BEM, which is a common task for BEM modelers.

Simulation Output Visualization

The case study explores the use of the code generation

ability of LLM in postprocessing and visualizing the

simulation output of EnergyPlus. The object virtual

building in the case study is a reference building: Large

Office developed by National Renewable Energy

Laboratory. More details of the building can be found in

(Deru, Field et al. 2011). The simulation weather file is

“2B_USA_AZ_PHOENIX.epw.” We use the model

ChatGPT-4 (July 6, 2023, Version) Code Interpreter in

this case study. The prompt is shown below, which first

provides a background about the source of the CSV file;

then, two visualization tasks are specified.

I want to conduct a python-based data

visualization based on the CSV file I uploaded.

The file is the simulation output of EnergyPlus

in the format of CSV.

First, I want to generate a timeseries stack

area plot for all enduses. Decide the color of

each stack by your understanding of the enduses.

For example, red for heating, and blue for

cooling. Also, just generate one week of results

in January. Add the correct title, axis label,

and unit to make the plot look professional.

Second, I want to generate a plot with subplots,

each subplot is timeseries line plot of all the

weather variables. Just generate two weeks of

results in August. Add the correct title, axis

label, and unit to make the plot look

professional.

Figure 2 shows the first plot LLM generated, which

perfectly matches the description of the stacked plot for

enduses in every aspect. It is worth mentioning that the

year is 1900 because the timestamp in the TMY weather

data is 1900.

Figure 2. LLM generated stack area plot of enduses

Figure 3 shows the LLM-generated subplots of weather

conditions, which is the second visualization request in

the prompt. The lines in the subplots are created

correctly, but the y labels in those subplots overlap with

each other. As a result, a follow-up prompt “the y labels

in those subplots just overlapped with each other. Please

refine the plot” is further sent to LLM and Figure 4 is the

improved version, which LLM explains that it “1) rotates

the y-labels by 45 degrees, 2) adds more spacing between

subplots, and 3) reduces the font size of the y-labels”,

which successfully address the overlapping problem.

LLM exhibits remarkable accuracy and robustness in

visualization when the users clearly understand and

describe their visualization objectives. Besides, the

human-in-the-loop validation process can also quickly

address shortcomings and improve visualization quality.

The time taken to process data and generate plots, which

is a key index to evaluate the LLM performance, is

significantly reduced from over 15 minutes (based on

authors’ Python skills) to manually create a Python code

to prepare the data for plotting and set the figure

configurations, to less than 1 minute to create the prompt

by describing the need. Meanwhile, the high accuracy of

code generation as well as the fast feedback-based error-

fixing feature of LLM make the quality of visualization

the same and even better than manual processing.

Figure 3. LLM generated subplots of weather

conditions: initial version

Figure 4. LLM generated subplots of weather

conditions: improved version

Simulation Knowledge Extraction and Training

In this case study, we utilize LLM to transform existing

knowledge bases into interactive learning platforms,

thereby optimizing the educational experience for BEM

learners of all proficiency levels by intelligently

generating, reorganizing, and presenting information in

a user-friendly manner. Specifically, we use RAG

technology to make BEMcyclopedia

(https://bemcyclopedia.com/), a U.S. Department of

Energy sponsored BEM information and education

portal, more interactive with BEM learners and users.

The diagram of RAG is shown in Figure 5. In Indexing

Pipeline, we prepare the document by crawling texts

from https://bemcyclopedia.com/ and chunking the

document into pieces (paragraphs) and generates the

embedding (vector representation) for these chunks. The

embeddings are then added to a vector database.

Indexing Pipeline is a one-time offline process. Next in

the Search Pipeline, two steps are involved. Step 1:

Vectorize the search query (question) and match it with

the most similar text chunks from the Vector Database.

Step 2: The LLM is fed with the question and the

matching text chunks as context for it to process. This

way the LLM only has to most relevant chunks and

returns the results in a timely fashion. Since the Search

Pipeline is an online process, the two steps are executed

each time the user asks a question.

Figure 5. Diagram of RAG to interact with

BEMcyclopedia

To validate the effectiveness, we compare 1) RAG, 2)

ChatGPT (September 25, 2023, Version), and 3) manual

search in terms of their ability to answer the questions

related to the content in BEMcyclopedia. The question

we design is “what is the purpose of BEMcyclopedia,”

and the answer of RAG is shown as follows.

The purpose of BEMcyclopedia is to serve as a

free resource for energy modelers to learn about

BEM and share knowledge with others. According

to the website's About page, the online, open-

content platform intends to provide practical

guidance to practitioners on how, when, and why

to apply BEM at various stages of the design

process and how to use such analyses to inform

design decisions. The content is organized into

two main sections: (1) "Learn by Design Task"

which is a collection of educational resources

organized around a typical building design

project's timeline, and (2) "Essential BEM

Concepts" which is a collection of general

knowledge and fundamental skills applicable to

various BEM tasks. The site's scope is focused

on building performance analysis, with a

specific emphasis on energy and emissions.

This answer is very comprehensive and include content

across many parts of BEMcyclopedia. When we ask

ChatGPT, the answer is shown as follows.

As of my last update in September 2023, I don't

have any information about a "BEMcyclopedia."

It's possible that it is a specific resource or

tool that has been developed after that date,

or it could be a niche or specialized resource

that hasn't been widely covered in publicly

available data.

Obviously, GPT-4 model has not included

BEMcyclopedia into its training process， which further

showcases the advantage of RAG of including the latest

knowledge. In terms of the manual search, we can find

in the webpage that

BEMcyclopedia was created as a free resource for

energy modelers to learn about BEM, and to share

their knowledge with others

which is far less comprehensive than the answer from

RAG.

This method can be further extended to 1) BEM software

documentations such as EnergyPlus Input Output

Reference, and 2) a combination of multiple BEM

training and documentation resources.

It's important to note that LLM-based search platforms

like bing.com/chat utilize GPT-4 alongside internet

search capabilities to produce precise results, similar to

those of RAG. However, when dealing with local private

data, RAG holds distinct advantages over all other

methods discussed in this section.

Results and Discussion

Highlighted Observations

This paper explores the potential applications of LLM in

BEM. The case studies are designed to provide a

preliminary examination of each topic. Based on our

findings, several observations are highlighted. First, the

case studies illustrate the efficacy of incorporating LLMs

in various BEM tasks. Visualization of simulation output

was particularly successful due to LLM's adept code

generation capabilities, simplifying data analysis and

plotting with Python code. Knowledge extraction and

training from simulations required the use of RAG,

adding another layer of complexity. The most intricate

task was simulation input generation, which demanded

the integration of multiple LLMs with prompt templates

to create a multi-agent system for modifying IDF files.

Overall, despite their preliminary nature, all case studies

https://bemcyclopedia.com/
https://bemcyclopedia.com/

were successfully executed and achieved their intended

outcomes.

Second, the case studies demonstrate that selecting the

right LLM techniques is essential to enhance

performance and reduce engineering efforts. Besides

direct use of LLM, three LLM techniques were utilized:

1) prompt engineering, 2) RAG, and 3) multi-agent

LLMs. The complexity and nature of tasks dictate the

selection of appropriate LLM techniques. As highlighted

in Simulation Knowledge Extraction and Training, RAG

proved superior to the direct use of LLM. Researchers

and engineers should pinpoint the most effective

approach among LLM techniques for varied tasks, rather

than uniformly applying a single method. In summary,

for tasks involving code generation, directly utilizing

LLMs typically suffices. When external knowledge is

necessary, employing RAG and fine-tuning can

effectively handle the task at hand. For more complex,

multi-step, and hierarchical processes, well-designed

prompt engineering and potentially the use of multi-

agent LLMs are recommended to navigate the intricacy.

Observed Limitations

While the results are promising, certain limitations are

evident. First, LLMs require significant computational

power, leading to high energy consumption and potential

financial burdens, especially when dependent on API-

based solutions or necessitating investment in

computational hardware like Graphics Processing Units.

However, the landscape is changing rapidly, with

technological advancements ushering in more efficient

and cost-effective LLMs. A prime example is the Llama-

2 (Touvron, Martin et al. 2023) 7B version, which holds

the promise of broadening accessibility and application

across diverse fields with low computation cost.

Second, self-consistency issue, the tendency of the

model to provide different or contradictory responses to

the same query, was identified as a challenge affecting

the reliability and accuracy of the results. In the case

studies, we addressed this issue by adjusting the

"temperature" parameter of the LLM to zero, although

further discussions on alternative solutions were beyond

our scope. BEM professionals should remain vigilant

and account for these potential inconsistencies when

leveraging LLMs in applications requiring high

accuracy. Research efforts are actively underway to

fundamentally improve the self-consistency of LLMs

(Wang, Wei et al. 2022). These theoretical advancements

are crucial in paving the way for more reliable LLMs.

However, practical measures are just as vital. Employing

continuous validation, corroborating with additional data

sources, and seeking expert insights are key strategies to

mitigate uncertainties and bolster the reliability of results

derived from LLMs.

Third, the lack of discussion on fine-tuning is a

significant limitation of this study. Fine-tuning is a vital

aspect of LLMs, especially for tasks that require in-depth

domain knowledge. This process involves refining the

model on specialized datasets to enhance its

performance. A notable example is the development of

BloombergGPT (Wu, Irsoy et al. 2023), which is a

specialized LLM for the financial sector, trained on a

diverse range of financial data. The idea of creating a

similar model, such as "BEMGPT," is intriguing and

holds potential for the field of BEM by eliminating the

need for RAG and prompt engineering, which reduces

computation cost and engineering effort. However, fine-

tuning is even more computationally demanding and

poses significant challenges in data design and

preparation for training. The creation of a domain-

specific model like 'BEMGPT' would require

meticulously curated datasets that accurately represent

the complexities of BEM. This necessity to refine and

adapt LLMs to the specific needs of BEM through fine-

tuning presents an important future research direction

worth exploring.

Fourth, we acknowledge the oversight in addressing the

challenges associated with processing long sequences of

prompts and managing substantial volumes of formatted

text inputs in LLM applications for BEM, especially the

application of the simulation input generation. This gap

highlights a critical area for future research. To mitigate

these issues, future work could explore the

implementation of a multi-agent LLM framework. Such

a system, featuring a central agent for segmenting

extensive text into smaller portions for individual

processing and subsequent aggregation, could

significantly enhance the handling of large-scale text

inputs. Furthermore, RAG can include huge amount of

external information outside of LLM prompts, which

will not be limited by the input length and token limit.

Additionally, many LLMs can also expand their context

window to a large capacity. For example, Claude 2.1

supports up to 200K tokens and GPT4 up to 128K. This

greatly increases the amount of information the LLMs

can intake as prompts. The real limitation of token limit

comes in the number of tokens the LLMs can output,

which is typically set to 4,096. The existing approach to

tackle the output token limitation is to ask the LLMs to

"continue" the previously generated text, and given that

the input token limit is large, the LLMs can generate long

output with multiple runs.

Conclusion

This paper explores the integration of LLMs in BEM by

examining potential applications identified through a

literature review of various modeling techniques. The

paper highlights the potential of LLMs to address the

significant reliance on expert knowledge in BEM,

proposing applications including 1) simulation input

generation, 2) simulation output analysis and

visualization, 3) conducting error analysis, 4) co-

simulation, 5) simulation knowledge extraction and

training, and 6) simulation optimization.

In case studies, we observed their effectiveness across a

range of tasks, from simplifying data analysis with code

generation, to integrating multiple LLMs in a multi-

agent system for intricate simulation input generation.

Crucially, selecting the right technique—be it direct use,

prompt engineering, RAG, or multi-agent systems—is

paramount to optimize performance and minimize

engineering efforts. While LLMs present immense

promise, there are challenges, including their significant

computational demands and potential self-consistency

issues. However, ongoing technological advancements

and research efforts are actively addressing these

limitations, thereby broadening the scope and ease of

LLM applications in diverse fields.

In the future, the integration of LLM and BEM will play

a crucial role in advancing sustainable and energy-

efficient building designs. Collaborative research

between AI and building modelers is key to effectively

utilizing LLMs in enhancing BEM. This

interdisciplinary approach will address the gap between

LLM capabilities and the specific needs of BEM,

leveraging domain-specific knowledge from model

experts alongside the expertise of AI specialists in

complex LLM modeling. Although much of AI expertise

is currently focused on sectors like medical science and

commerce, establishing incentives and raising awareness

is necessary to redirect attention and contributions from

AI experts to the building sector. The creation of

specialized LLMs, such as "BEMGPT," specifically

tailored for BEM, holds promise for the future of

sustainable building solutions.

Nomenclature

AI: artificial intelligence

API: Application Programming Interface

BEM: building energy modeling

HVAC: heating, ventilation, and air conditioning

IDD: input data dictionary

IDF: input data file

LLM: large language model

References

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D.

Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G.

Sastry and A. Askell (2020). "Language models are

few-shot learners." Advances in neural information

processing systems 33: 1877-1901.

Bsharat, S. M., A. Myrzakhan and Z. Shen (2023).

"Principled Instructions Are All You Need for

Questioning LLaMA-1/2, GPT-3.5/4." arXiv

preprint arXiv:2312.16171.

Chen, Z., Y. Li, J. Wen, A. Pertzborn, W. V. Payne, L.

J. Lo, G. G. Z. O’Neill and P. S. T. Bushby (2023).

"A Simulation Framework for Analyzing the Impact

of Stochastic Occupant Behaviors on Demand

Flexibility in Typical Commercial Buildings."

Crawley, D. B., L. K. Lawrie, F. C. Winkelmann, W. F.

Buhl, Y. J. Huang, C. O. Pedersen, R. K. Strand, R.

J. Liesen, D. E. Fisher and M. J. Witte (2001).

"EnergyPlus: creating a new-generation building

energy simulation program." Energy and buildings

33(4): 319-331.

Deru, M., K. Field, D. Studer, K. Benne, B. Griffith, P.

Torcellini, B. Liu, M. Halverson, D. Winiarski and

M. Rosenberg (2011). "US Department of Energy

commercial reference building models of the

national building stock."

Hong, S., X. Zheng, J. Chen, Y. Cheng, J. Wang, C.

Zhang, Z. Wang, S. K. S. Yau, Z. Lin and L. Zhou

(2023). "Metagpt: Meta programming for multi-

agent collaborative framework." arXiv preprint

arXiv:2308.00352.

IEA, I. E. A. (2023). "https://www.iea.org/energy-

system/buildings." from

https://www.iea.org/energy-system/buildings.

MacNeil, S., A. Tran, A. Hellas, J. Kim, S. Sarsa, P.

Denny, S. Bernstein and J. Leinonen (2023).

Experiences from using code explanations

generated by large language models in a web

software development e-book. Proceedings of the

54th ACM Technical Symposium on Computer

Science Education V. 1.

Roth, A., D. Goldwasser and A. Parker (2016). "There's

a measure for that!" Energy and Buildings 117: 321-

331.

Su, Y., C. Wan, U. Sethi, S. Lu, M. Musuvathi and S.

Nath (2023). HotGPT: How to Make Software

Documentation More Useful with a Large Language

Model? Proceedings of the 19th Workshop on Hot

Topics in Operating Systems.

Touvron, H., L. Martin, K. Stone, P. Albert, A.

Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P.

Bhargava and S. Bhosale (2023). "Llama 2: Open

foundation and fine-tuned chat models." arXiv

preprint arXiv:2307.09288.

https://www.iea.org/energy-system/buildings
https://www.iea.org/energy-system/buildings
https://www.iea.org/energy-system/buildings

Wang, X., J. Wei, D. Schuurmans, Q. Le, E. Chi, S.

Narang, A. Chowdhery and D. Zhou (2022). "Self-

consistency improves chain of thought reasoning in

language models." arXiv preprint

arXiv:2203.11171.

White, J., Q. Fu, S. Hays, M. Sandborn, C. Olea, H.

Gilbert, A. Elnashar, J. Spencer-Smith and D. C.

Schmidt (2023). "A prompt pattern catalog to

enhance prompt engineering with chatgpt." arXiv

preprint arXiv:2302.11382.

Wu, Q., G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu,

B. Li, L. Jiang, X. Zhang and C. Wang (2023).

"Autogen: Enabling next-gen llm applications via

multi-agent conversation framework." arXiv

preprint arXiv:2308.08155.

Wu, S., O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S.

Gehrmann, P. Kambadur, D. Rosenberg and G.

Mann (2023). "Bloomberggpt: A large language

model for finance." arXiv preprint

arXiv:2303.17564.

Xiang, X., M. Ma, X. Ma, L. Chen, W. Cai, W. Feng and

Z. Ma (2022). "Historical decarbonization of global

commercial building operations in the 21st century."

Applied Energy 322: 119401.

Zhang, L., S. M. Haroon and A. Ryan "Py-Cosim:

Python-Based Building Energy Co-Simulation

Infrastructure." Available at SSRN 4572925.

