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Abstract 

The rapid progression in artificial intelligence has 

facilitated the emergence of Large Language Models 

(LLMs) like ChatGPT, offering potential applications 

extending into building energy modeling (BEM). This 

paper investigates the innovative integration of LLMs 

with BEM tools, focusing specifically on the fusion of 

ChatGPT with EnergyPlus. A literature review reveals a 

growing trend of incorporating LLMs in engineering 

modeling, albeit limited research on their application in 

BEM. We underscore the potential of LLMs in 

addressing BEM's challenges and outline potential 

applications such as input generation. Through case 

studies, we demonstrate the transformative potential of 

LLMs in revolutionizing the BEM lifecycle. 

Introduction 

Buildings are significant contributors to global energy 

consumption and carbon emissions, responsible for 

approximately 30% of the world's energy use and 26% 

of CO2 emissions (IEA 2023). Buildings represent a 

critical sector in the global pursuit of decarbonization 

and reduction of greenhouse gas emissions (Xiang, Ma 

et al. 2022). Building Energy Modeling (BEM) plays a 

pivotal role in this endeavor. BEM is a computational 

technique that uses algorithms to simulate and predict the 

energy consumption of buildings based on various 

parameters, such as architectural design, materials, 

operational schedules, and local climate. It serves as a 

powerful tool for architects, engineers, and 

policymakers, aiding in the design and operation of 

energy-efficient buildings, as well as in the formulation 

of effective building codes and standards. By optimizing 

energy use and implementing renewable energy systems, 

BEM facilitates the path to building decarbonization.  

BEM, at its core, is a highly technical and specialized 

discipline, steeped in a need for extensive knowledge 

and experience. This necessity stems from the 

multifaceted and interconnected nature of building 

science and the diverse range of systems that underpin a 

building's operations, particularly in the field of heating, 

ventilation, and air conditioning (HVAC). Users of BEM 

must understand the fundamentals of these systems, as 

well as the principles of physics that govern their 

interactions, in order to accurately capture building 

characteristics and thus correctly model its energy 

consumption. This deep understanding needs to be 

paired with proficiency in specific BEM software. Each 

of these software packages comes with its own nuances, 

language, and operational complexities. Mastering these 

tools demands a significant investment of time and 

effort, often deterring those who lack the necessary 

background or resources from effectively leveraging 

BEM in their work. Furthermore, the sophistication of 

modern buildings, equipped with complex mechanical 

systems and novel materials, adds to the challenges faced 

by BEM practitioners. Buildings are no longer 

standalone entities but parts of broader energy networks, 

connected to other buildings and infrastructures. This 

expanded scope, coupled with an ever-increasing push 

for sustainability, means that users of BEM now must 

possess an even more diversified range of expertise, 

from understanding emerging technologies to 

interpreting complex regulations and codes. All these 

factors make BEM an expertise-intensive area, requiring 

a deep and broad knowledge base that spans multiple 

disciplines, making it an intricate field to navigate for 

newcomers and even some experienced professionals. 

The rapid progression in the field of artificial intelligence 

(AI) has facilitated the emergence of Large Language 

Models (LLMs) like ChatGPT, offering potential 

applications extending into the realm of BEM. The 

integration of LLMs in BEM holds significant potential 

due to its transformative impact on human-machine 

interactions. Traditionally, user engagement with 

complex machinery or systems, like BEM software, has 

been constrained by a steep learning curve and the need 

for specialist knowledge. However, LLMs, with their 

ability to comprehend and generate reasonable natural 

language, can significantly streamline these interactions, 

making them more accessible and intuitive. LLMs 



   

 

essentially serve as an interface, allowing users to 

communicate with the BEM software using natural 

language. This drastically lowers the technical barrier, 

enabling those without specialist knowledge to interact 

with BEM systems. For instance, a user could instruct 

the system to modify certain parameters or request an 

interpretation of the simulation results in simple, 

everyday language, and the LLM can translate these 

instructions into actions or provide explanations. 

Moreover, LLMs are not limited to merely simplifying 

interactions; they can also contribute to knowledge 

enhancement. Given their vast training data 

encompassing various topics, LLMs can offer valuable 

insights, explanations, or suggest best practices related 

to BEM. They can potentially serve as an intelligent 

assistant, guiding users through complex BEM tasks, 

enhancing their understanding, and helping them make 

informed decisions. This shift in how users interact with 

BEM tools could democratize access to these systems, 

broadening their application and thus contributing more 

effectively to decarbonization goals. 

In order to explore this topic of how we can advance 

BEM with LLM, we first review the development and 

characteristics of LLM and its application in facilitating 

the usage of specialized and professional software; then 

we summarize the promising applications of LLMs in 

BEM. Then, we design preliminary case studies to 

demonstrate the effectiveness of potential LLM 

applications in BEM. In the final sections, we discuss the 

results of the case studies and conclude with an outlook 

on future trends and developments in the application of 

LLMs in BEM. 

LLM in Engineering Modeling and BEM 

At the point of writing the paper, we found few papers 

discussing the topic of LLM in BEM. To understand the 

existing work that can benefit this particular topic, we 

review the papers from a broader perspective. Since 

BEM is a type of interaction between humans and 

software requiring expert knowledge, it is worth 

investigating how LLM has already helped with 

benefiting the usage of specialized and professional 

software-based modeling requiring expert knowledge.  

User-Friendly Interfaces 

LLMs can provide a conversational interface to interact 

with complex software, simplifying the user experience. 

For instance, they can enable users to perform tasks 

using natural language commands, rather than having to 

navigate complicated menus or learn specific 

programming languages. Brown et al. (Brown, Mann et 

al. 2020) demonstrated how GPT-3, an LLM, can 

understand and respond to natural language prompts, 

which could be applied to create more user-friendly 

interfaces. 

In BEM, a user-friendly interface is crucial for ease of 

use. Consider EnergyPlus (Crawley, Lawrie et al. 2001), 

where all the user interfaces (e.g., OpenStudio, 

DesignBuilder, and Ladybug Tools) are graphical user 

interfaces. However, the forms of interface should not be 

limited. A well-designed interface empowers BEM users 

to easily express their modeling needs and receive 

simulation results in a manner that is most direct and 

comprehensible, making the natural-language-based 

user interface a promising field. Currently, there is a lack 

of such interfaces in BEM, and we posit that their 

integration into software tools would substantially 

enhance workflow efficiency. 

Code Generation 

LLMs have the capability to comprehend programming 

languages and generate code snippets from natural 

language prompts. GitHub Copilot 

(https://github.com/features/copilot), a collaborative 

effort between GitHub and OpenAI, serves as an AI pair 

programmer, offering code suggestions while developers 

write, thus accelerating the coding process, reducing 

error potential, and offering a learning resource. 

LLMs can further automate data and modeling workflow 

through code generation capabilities. This allows LLM 

to automate complex processes by coordinating tasks 

across various software tools. They can interpret 

instructions given in natural language, create the 

required commands or scripts, and then perform or 

arrange the tasks as needed. Many LLM-based tools 

(e.g., AutoGen (Wu, Bansal et al. 2023) and MetaGPT 

(Hong, Zheng et al. 2023)) have already proven their 

ability in LLM-based workflow automation. In data-

intensive fields, LLMs can automate tasks such as data 

cleaning, preprocessing, analysis, and visualization. 

They can understand high-level descriptions of the 

desired data transformations or analyses, generate the 

necessary code, and provide the results in a user-friendly 

format. 

The automation of simulation tasks is a very important 

branch of BEM. Currently, the most widely used BEM 

automation methodology is OpenStudio Measure (Roth, 

Goldwasser et al. 2016). OpenStudio Measures are Ruby 

scripts that extend OpenStudio's functionality, enabling 

users to customize energy models, implement energy-

saving strategies, and automate tasks in a collaborative 

platform. However, the development of OpenStudio 

Measure has a very high requirement for the skills of 

Ruby programming language, OpenStudio, EnergyPlus, 

as well as knowledge in building science and building 

equipment. LLM has great potential to further “automate 

the automation” by auto-generating Ruby scripts. It will 

https://github.com/features/copilot


   

 

bring the automation of BEM to the next level from data 

collection, model generation, and simulation results 

reporting. 

The LLM has proven to be highly effective in workflow 

automation, seamlessly orchestrating tasks across a 

diverse range of software tools. This capability makes it 

an ideal candidate for BEM co-simulation tasks. BEM 

co-simulations require the integration of multiple 

software tools and models to meticulously simulate and 

analyze a building's energy performance, considering a 

multitude of factors including HVAC systems, weather 

conditions, occupant behavior, and the characteristics of 

the building envelope. The expertise of the LLM in code 

generation, workflow automation, and data processing 

positions it as a valuable asset in streamlining and 

enhancing the efficiency of BEM automation processes. 

Documentations, Tutorials, and Training 

Documentations, tutorials, and training play a crucial 

role in the effective and efficient use of any professional 

software. They serve as the first point of contact for new 

users and a reference guide for experienced ones. In the 

past, these resources were static and sometimes difficult 

to comprehend, especially for complex software. 

However, the advent of LLM is ushering in a new era of 

intelligent, dynamic, and interactive user assistance. One 

of the most exciting capabilities of LLMs is their ability 

to generate and reorganize content in a way that makes it 

more accessible and user-friendly. LLMs can produce 

well-structured documentation, interactive tutorials, and 

step-by-step guides in real-time, tailored to the specific 

needs of the user. For instance, an LLM could produce a 

beginner's guide to a complex data analysis software by 

generating explanations and examples in plain language, 

or generate a more advanced tutorial focusing on a 

particular feature or use case based on the user's specific 

query.  

In addition, LLMs also offer real-time support by 

answering specific questions about software features. 

Rather than having to sift through a FAQ page or search 

for a relevant tutorial or question-and-answer forum, 

users can simply ask the LLM their question in natural 

language. The LLM can understand the query, find the 

most relevant information, and generate a helpful 

response. This kind of interactive, on-demand assistance 

can significantly reduce the learning curve associated 

with complex software, making it more accessible to a 

broader range of users.  

MacNeil et al. (MacNeil, Tran et al. 2023) reported on 

their experiences generating multiple code explanation 

types using LLMs and integrating them into an 

interactive e-book on web software development. Three 

different types of explanations – a line-by-line 

explanation, a list of important concepts, and a high-level 

summary of the code – were created. Their results show 

that all explanation types were viewed by students and 

that the majority of students perceived the code 

explanations as helpful to them. Su et al. (Su, Wan et al. 

2023) explores the question of how to make software 

documentation more useful with an LLM. They 

investigate a general, one-model-fit-all solution through 

a state-of-the-art LLM (ChatGPT). The paper covers 

three representative tasks: extracting locking rules from 

comments, synthesizing exception predicates from 

comments, and identifying performance-related 

configurations; it also reveals challenges and 

opportunities in applying LLMs to system maintenance.  

Error Identification and Troubleshooting 

Error identification and troubleshooting have 

traditionally been complex processes, requiring 

specialized knowledge and experience. However, the 

incorporation of LLM into these systems is transforming 

how these tasks are performed, making them more 

efficient and accessible to a broader range of users. 

LLMs can assist in identifying and troubleshooting 

errors by interpreting descriptions of issues provided by 

the users. This involves natural language processing 

capabilities that allow the AI to understand the user's 

language, including technical terms and even colloquial 

or less precise descriptions of problems. The LLMs can 

then match these descriptions with known errors or 

issues, helping to pinpoint what may be going wrong. 

One of the main benefits of using LLMs in error 

identification is that they can significantly reduce the 

time taken to understand and diagnose the problem. For 

example, if a user encounters a software crash, they 

could describe the issue to the LLM, which would then 

process this description, correlate it with known bugs or 

issues, and suggest possible causes for the crash. In terms 

of troubleshooting, LLMs can provide step-by-step 

guidance to resolve the identified issues. Based on the 

identified error, the LLM can generate a list of potential 

solutions, ordered by their likelihood of success or ease 

of implementation. This could range from simple 

solutions like restarting the software to more complex 

procedures such as modifying specific settings or 

running certain commands. In each case, the LLM can 

provide clear, easy-to-follow instructions, making it 

easier for non-expert users to resolve issues on their own.  

Moreover, LLMs can learn from each interaction, 

thereby enhancing their ability to handle similar issues 

in the future. This capability allows them to become 

more effective over time, ultimately improving the 

efficiency of the troubleshooting process. This 

debugging process can also be automated and integrated 

within the software's operational cycle, allowing the 

system to self-correct iteratively until it operates without 



   

 

faults, thus streamlining the modeling process and 

enhancing system reliability. Overall, the use of LLMs 

in error identification and troubleshooting represents a 

significant leap forward. By enabling rapid diagnosis 

and resolution of software issues, they not only enhance 

the user experience but also increase the overall 

efficiency and reliability of software systems. 

Most commercial LLM tools are available for general 

error identification and troubleshooting. For instance, 

ChatGPT can assist with debugging by pinpointing and 

clarifying common errors like syntax or logical mistakes. 

Unfortunately, similar tools specifically designed for 

professional software are currently lacking. 

In the context of BEM, error identification and 

troubleshooting have traditionally been complex 

processes, especially for expert-knowledge-dependent 

software such as EnergyPlus. Users often have to sift 

through dense technical documentation or rely on trial-

and-error methods to identify and rectify issues, which 

can be time-consuming and inefficient. However, with 

the introduction of LLMs, these processes could be 

significantly streamlined and enhanced. 

Potential Applications of LLM in BEM 

In this sub-section, we further summarize the advances 

and advantages of LLMs in the context of the key 

challenges in BEM, especially its heavy dependency on 

expert knowledge. We explore and propose several 

potential applications of LLMs with case studies to 

enhance and streamline the BEM process. 

Simulation Input Generation 

Defining simulation input is a foundational step in BEM, 

where detailed parameters such as building geometry, 

material properties, HVAC system configurations, 

occupancy patterns, and local climate data are defined to 

represent a building’s characteristics for energy 

modeling. LLMs, equipped with vast knowledge bases 

and adept natural language processing capabilities, are 

uniquely positioned to streamline this intricate process. 

For instance, a user might describe a building’s façade as 

“mostly glass with southern exposure.” An LLM, 

through prompt engineering, can interpret this to 

generate specific parameters like window-to-wall ratio, 

glazing type, and solar heat gain coefficients. An LLM 

can then adeptly transform these descriptions into a 

structured input format, meticulously populating a BEM 

input file, such as the Input Data Dictionary (IDD) for 

EnergyPlus, ensuring all parameters align with the 

template’s requirements. In summary, LLMs 

significantly enhance the efficiency of setting up BEM 

by translating natural descriptions into precise 

simulation inputs, ensuring accurate and streamlined 

energy analysis. 

Simulation Output Analysis and Visualization 

BEM has structured simulation output format, which is 

very suitable to be processed by LLM with its ability of 

code generation to automatically conduct data analysis, 

modeling, and visualization. Besides, the unique 

challenges of BEM outputs demand more specialized 

solutions. LLMs, equipped with capabilities of context-

aware data interpretation, can not only contribute to data 

automation but also assist in offering deeper insights and 

extracting meaningful knowledge from vast simulation 

datasets. For instance, when analyzing a spike in energy 

consumption, an LLM might correlate it with specific 

HVAC activities during peak occupancy hours, offering 

a nuanced understanding.  

Conducting Error Analysis 

As simulations grow in complexity, the potential for 

errors increases, and these errors can manifest in various 

ways. Some errors, due to violations of basic model 

assumptions or misconfigurations, can cause the 

simulation to fail outright. For instance, specifying an 

impossible combination of materials or an HVAC 

system operating outside its feasible range might halt an 

EnergyPlus simulation before it even begins. On the 

other hand, subtler errors might not stop the simulation 

but can lead to anomalous results. An incorrectly defined 

occupancy schedule or a misconfigured shading device 

might not prevent the simulation from running but could 

result in unexpected energy consumption spikes or 

temperature fluctuations. 

LLMs can assist in pinpointing and elucidating these 

errors. For a complete simulation failure, an LLM might 

trace the issue to a specific input violation. For 

anomalous results, it might highlight potential 

inconsistencies or misconfigurations that led to the 

unexpected behavior. 

While LLMs can identify and explain many known 

errors, novel or unprecedented issues might be harder to 

diagnose. The vast array of potential BEM errors, each 

with its unique characteristics, makes error analysis in 

tools like EnergyPlus a nuanced task. Continuous fine 

tuning of the LLM on the latest BEM datasets and 

updates is essential. For instance, EnergyPlus has a rich 

ecosystem of resources like the Engineering Reference, 

the Input Output Reference, and community forums. An 

LLM can be trained on these resources to enhance its 

diagnostic capabilities. When a user encounters an error, 

the LLM can cross-reference the user's description with 

known issues from these resources, provide relevant 

excerpts from user documents, or even suggest similar 

cases discussed in community forums. Integrating user 

feedback loops enables LLM to learn from its misses, 

refining its diagnostic capabilities over time. However, 

integrating user feedback loops, while beneficial, 



   

 

presents challenges such as ensuring the credibility of 

user feedback, especially when it is not entirely accurate. 

Co-Simulation 

Co-simulation in BEM involves the concurrent use of 

multiple simulation tools, each specialized in a particular 

domain, to provide a comprehensive analysis of a 

building's energy performance. For instance, while 

EnergyPlus might be used to simulate the overall energy 

consumption of a building, a separate tool might be 

employed to model occupant behaviors based on the 

simulated building environment (Chen, Li et al. 2023) 

(Zhang, Haroon et al.). 

The integration of LLMs in co-simulation processes can 

streamline the coordination between these tools. LLMs 

can potentially understand the intricacies of each tool 

and ensure that data is seamlessly transferred and 

interpreted across platforms.  

However, challenges arise in co-simulation. Ensuring 

real-time synchronization between different tools, 

managing data consistency, and handling potential 

conflicts in overlapping domains are all intricate tasks. 

Additionally, the sheer diversity of tools, each with its 

own set of assumptions, parameters, and output formats, 

can complicate the integration process. 

Simulation Knowledge Extraction and Training 

Efficient and comprehensive documentation and training 

pose a significant challenge in BEM. Consider 

EnergyPlus as an instance; federal agencies, professional 

organizations, and companies have invested substantial 

efforts to create helpful resources. However, most 

training and tutorials of EnergyPlus limited to the form 

of 1) static and web-based documentation, 2) online and 

offline training sessions, 3) question-and-answer site, 

and 4) online encyclopedia. Since LLMs are 

revolutionizing how we understand and interact with the 

documentation and the tutorials of expert software 

through their ability to generate, reorganize, and present 

information in an intelligent and user-friendly manner, 

they are not only simplifying the use of complex 

software but also enhancing the learning experience for 

users of all levels. The result is to provide a more 

inclusive, efficient, and effective learning and 

documenting experience for BEM. Besides, through the 

fast-developing BEM technologies, the topic of an up-

to-date knowledge is extremely relevant and important. 

LLMs can stay updated with new knowledge, so they can 

always provide accurate information and support, 

something that static documentation can struggle with. 

Simulation Optimization 

Optimizing a building's energy performance is a 

multifaceted endeavor, drawing heavily on the processes 

detailed in earlier sections. At its core, optimization 

refines the myriad parameters that define a building's 

energy model to achieve the best possible outcomes. 

For instance, while Section Simulation Input Generation 

discussed how an LLM can assist users in defining 

parameters based on their descriptions, in the context of 

optimization, the LLM's role shifts slightly. Using the 

building's façade example, instead of merely interpreting 

a user's description, the LLM might proactively suggest 

specific parameters, such as window-to-wall ratio, 

glazing type, or solar heat gain coefficients, to optimize. 

These suggestions would be informed by a combination 

of factors: extensive datasets of similar building 

configurations and their performance metrics, best 

practices in architectural and engineering design, 

historical trends in energy consumption, predictive 

models of future energy needs, and even feedback loops 

from real-world building performance post-occupancy. 

Ultimately, the goal of simulation optimization is to 

harmonize energy efficiency with building functionality 

and occupant comfort or well-being. While LLMs can 

provide invaluable data-driven insights and suggestions, 

the intricate nuances of building design, occupant 

behaviors, and real-world conditions underscore the 

irreplaceable value of human judgment in the decision-

making process. 

As we transition into the case studies, it is essential to 

emphasize that LLMs are tools designed to augment our 

expertise, not replace it. Their role is to assist and 

enhance, while the final decisions and creative insights 

remain inherently human. 

Case Studies 

In this section, we design three case studies to 

demonstrate the effectiveness of potential LLM 

applications in BEM. In conducting our case studies, we 

employ three key methodologies harnessing the 

capabilities of LLMs: 1) prompt engineering, 2) multi-

agent LLMs, and 3) retrieval augmented generation 

(RAG). The prompt engineering method revolves around 

carefully crafting prompts or instructions to guide the 

LLM in executing desired tasks. This method capitalizes 

on the LLM's ability to interpret and respond to natural 

language prompts without requiring specific model 

alterations. It involves a deep understanding of how the 

model processes and responds to different types of 

prompts, and leveraging this understanding to generate 

accurate and effective outcomes. On the other hand, 

multi-agent LLMs incorporate multiple LLMs working 

collaboratively to solve complex problems or perform 

intricate tasks. This approach capitalizes on the 

collective intelligence and diverse capabilities of 

multiple LLMs, allowing for more comprehensive and 

nuanced problem-solving. Both these methodologies 



   

 

offer unique advantages and can be leveraged according 

to the specific requirements of the task at hand. While 

the prompt Engineering method can be utilized quickly 

and efficiently, the multi-agent LLMs offer superior 

performance for tasks that demand a combination of 

specialized knowledge, creativity, and collaborative 

decision-making, providing a robust solution that often 

surpasses the capabilities of a single LLM. Lastly, RAG 

uses the model's advanced natural language processing 

capabilities to perform in-depth searches, extracting 

contextually relevant information from vast datasets. 

This approach is crucial for BEM tasks that require a 

comprehensive understanding of complex subject matter 

and the synthesis of data from multiple sources to 

produce informed and precise conclusions. 

Simulation Input Generation 

In this section, we will apply LLM and its relevant 

techniques to generate and modify Input Data File (IDF) 

objects and files as the input of EnergyPlus. 

Single Object Generation 

We first use LLM to generate a people object by telling 

the LLM that “Generate a ‘People’ object for me. I want 

it to be defined by ‘Number of People’ which is set to 10, 

and set other field values either default or blank.” We 

first directly send this request to LLM without prompt 

engineering, and the output is shown below. In this 

section, we use ChatGPT-4 July 6, 2023, Version. 

People, 

  People_1, !- Name 

  , !- Zone or ZoneList Name 

  , !- Number of People Schedule Name 

  , !- Number of People Calculation Method 

  10, !- Number of People 

  , !- People per Zone Floor Area (person/m2) 

  , !- Zone Floor Area per Person (m2/person) 

  0.3, !- Fraction Radiant 

  AUTOCALCULATE, !- Sensible Heat Fraction 

  Activity Level Schedule Name, !- Activity 

Level Schedule Name 

  3.82E-8, !- Carbon Dioxide Generation Rate 

(m3/s-W) 

  Yes, !- Enable ASHRAE 55 Comfort Warnings 

  ZoneAveraged, !- Mean Radiant Temperature 

Calculation Type 

  , !- Surface Name/Angle Factor List Name 

  Work efficiency schedule name, !- Work 

Efficiency Schedule Name 

  Clothing insulation schedule name, !- Clothing 

Insulation Calculation Method Schedule Name 

  , !- Clothing Insulation Schedule Name 

  , !- Air Velocity Schedule Name 

  , !- Thermal Comfort Model 1 Type 

  , !- Thermal Comfort Model 2 Type 

  , !- Thermal Comfort Model 3 Type 

  , !- Thermal Comfort Model 4 Type 

  , !- Thermal Comfort Model 5 Type 

  , !- Thermal Comfort Model 6 Type 

  , !- Thermal Comfort Model 7 Type 

The generated people object is partially correct. It can be 

seen that the key field “Number of People Calculation 

Method” is left blank, meaning that LLM does not 

capture the people calculation method from the prompt. 

Besides, the value of “Enable ASHRAE 55 Comfort 

Warnings” is “yes” instead of “no” (default value), 

which is against the requirement in the prompt. 

We try to use prompt engineering to improve the 

accuracy of the object generated. We designed a prompt 

engineering script shown as below. 

Set the temperature to 0 

The user wants to automatically generate text-

based idf objects for EnergyPlus Simulation. The 

format of a certain type of object called 

"People" is provided in triple back-ticks. 

Here is the users' prompt below: 

"Generate a "People" object for me. I want the 

people object to be defined by "Number of 

People" which is set to 10, and make other fields 

value to be either default or blank. " 

Some general rules when generating the object: 

- If the field is not mandatory and is not 

defined by the user, please do not put a value 

in the field. 

- If the field is mandatory but not defined by 

the user, please set it to "TBD" + a 10-digit 

random number 

- Even though some fields are optional or not 

defined by the user, keep them in the object 

definition. 

- In the object generated, comment after "!" for 

each field about why the value is set or is left 

blank 

- If the rules above conflict with the users' 

prompt, prioritize the rules here and inform the 

user there is a conflict 

In the end after the object is generated, tell 

the user: 

- Which fields are set by user 

- Which fields are mandatory but not defined 

- Which fields are set to their default values 

- Which fields are left blank 

``` 

People, 

\memo Sets internal gains and contaminant rates 

for occupants in the zone. 

\memo If a ZoneList, SpaceList, or a Zone 

comprised of more than one Space is specified 

\memo then this definition applies to all 

applicable spaces, and each instance will 

\memo be named with the Space Name plus this 

Object Name. 

\min-fields 10 

! \field Name 

…(full IDD file omitted because of the word 

limit) 

``` 

In the first paragraph, we define “temperature” as a 

parameter that controls the randomness of LLM's output, 

with a range from 0 to 1. A lower temperature results in 

more deterministic responses, essential for rule-based 

tasks such as EnergyPlus object creation. Therefore, we 

set the temperature to 0. In the second paragraph, we 



   

 

provide ground truth to the task by referring to the IDD 

file. EnergyPlus object is defined by the IDD file, which 

provides the structure and format of input data required 

by the simulation program. The third paragraph provide 

a placeholder for the user’s request, in this case, to 

generate a people object with 10 people. The fourth 

paragraph defines the rules for object generation to (1) 

guarantee the object aligns precisely with user-defined 

information and (2) prevent syntax errors by ensuring all 

obligatory fields are accounted for. Furthermore, we 

instruct the LLM to annotate field values with comments 

elucidating the rationale behind its decisions, thereby 

providing modelers with a transparent view of the LLM's 

decision-making process.  

The output with prompt engineering is shown below. 

The output format is correct and the values in all fields 

follow the rules we defined in the prompt template. 

People, 

  TBD1234567890, !- Name - Mandatory but not 

defined by user, so set to "TBD" 

  TBD2345678901, !- Zone or ZoneList or Space 

or SpaceList Name - Mandatory but not defined 

  TBD3456789012, !- Number of People Schedule 

Name - Mandatory but not defined 

  People, !- Number of People Calculation Method 

- Default value used as it's not defined by user 

  10, !- Number of People - Defined by user 

  , !- People per Floor Area - Not mandatory and 

not defined by user, so left blank 

  , !- Floor Area per Person - Not mandatory and 

not defined by user, so left blank 

  0.3, !- Fraction Radiant - Default value used 

as it's not defined by user 

  AUTOCALCULATE, !- Sensible Heat Fraction - 

Default value used as it's not defined by user 

  TBD4567890123, !- Activity Level Schedule Name 

- Mandatory but not defined 

  3.82E-8, !- Carbon Dioxide Generation Rate - 

Default value used as it's not defined by user 

  No, !- Enable ASHRAE 55 Comfort Warnings - 

Default value used as it's not defined by user 

  ZoneAveraged, !- Mean Radiant Temperature 

Calculation Type - Default value used as it's 

not defined by user 

  , !- Surface Name/Angle Factor List Name - Not 

mandatory and not defined by user 

  , !- Work Efficiency Schedule Name - Not 

mandatory and not defined by user 

  ClothingInsulationSchedule, !- Clothing 

Insulation Calculation Method - Default value 

used as it's not defined by user 

  , !- Clothing Insulation Schedule Name - Not 

mandatory and not defined by user 

  , !- Air Velocity Schedule Name - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 1 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 2 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 3 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 4 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 5 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 6 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Thermal Comfort Model 7 Type - Not 

mandatory and not defined by user, so left blank 

  , !- Ankle Level Air Velocity Schedule Name - 

Not mandatory and not defined by user, blank 

  15.6, !- Cold Stress Temperature Threshold - 

Default value used as it's not defined by user 

  30, !- Heat Stress Temperature Threshold - 

Default value used as it's not defined by user 

Besides, the reasoning behind the value is also correctly 

explained in the comments and in the generated 

explanation texts shown below. The accuracy of the 

output is obviously improved compared with that 

without prompt engineering. After filling TBD values 

with actual values, it can be run in EnergyPlus without 

any error. 

Here's a summary: 

Fields set by user: "Number of People" 

Mandatory fields not defined: "Name", "Zone or 

ZoneList or Space or SpaceList Name", "Number 

of People Schedule Name", "Activity Level 

Schedule Name" 

Fields set to default values: "Number of People 

Calculation Method", "Fraction Radiant", 

"Sensible Heat Fraction", "Carbon Dioxide 

Generation Rate", "Enable ASHRAE 55 Comfort 

Warnings", "Mean Radiant Temperature 

Calculation Type", "Clothing Insulation 

Calculation Method", "Cold Stress Temperature 

Threshold", "Heat Stress Temperature Threshold" 

Fields left blank: "People per Floor Area", 

"Floor Area per Person", "Surface Name/Angle 

Factor List Name", "Work Efficiency Schedule 

Name", "Clothing Insulation Calculation Method 

Schedule Name", "Clothing Insulation Schedule 

Name", "Air Velocity Schedule Name", "Thermal 

Comfort Model 1 Type", "Thermal Comfort Model 2 

Type", "Thermal Comfort Model 3 Type", "Thermal 

Comfort Model 4 Type", "Thermal Comfort Model 5 

Type", "Thermal Comfort Model 6 Type", "Thermal 

Comfort Model 7 Type", "Ankle Level Air Velocity 

Schedule Name" 

Although not explored in this paper, we can further add 

different types of improvements to the prompt, e.g., 

"assume the role of the best assistant in IDF object 

generation”, “reason step-by-step and logically at all 

times”, “review generated output in terms of errors and 

fix them”, and “iteratively improve output until it is 

correct and complete” (White, Fu et al. 2023). Many 

papers (Bsharat, Myrzakhan et al. 2023) discuss novel 

prompt engineering techniques which can be future work 

to further improve the input generation performance. 

In summary, we observed the necessity of prompt 

engineering in creating a specific EnergyPlus object 

based on natural language input. In terms of the time 

spent on object creation, the user takes less than a minute 

to write a prompt in the placeholder of the prompt 



   

 

template we designed in LLM; furthermore, the user 

does not need the expertise in the IDF object. 

Whole IDF Modification 

We will further investigate whether LLM can deal with 

the complete IDF file in this section. Since the generation 

of a complete IDF file requires too much information 

using the natural language input, we just focus on 

revising the existing IDF based on user’s requirements 

in the case study. 

We will use multi-agent LLM techniques. The diagram 

is shown in Figure 1. It consists of a central LLM agent 

and several LLM task agents. Central LLM agent 

communicates with the user, plans sub-tasks, assigns 

sub-tasks to specialized LLM task agents, aggregates the 

results from LLM task agents, and sends results to users.  

 

Figure 1. Multi-agent LLMs for IDF modification 

The central LLM agent is based on the GPT-4 Advanced 

Data Analysis plugin (September 25, 2023, Version), 

which supports the upload of complete idf files. The 

central LLM agent is based on the following prompt 

template. 

You are the central LLM agent in a multi-agent 

LLMs used to modify idf files based on user’s 

input. Here are your tasks:  

1. Ask for idf files and the modification 

requirement from user. 

2. Based on the user’s input, identify the 

relevant objects and extract them as texts. 

3. Send objects in the form of text to the 

correspondent LLM task agents. 

4. Wait for the feedbacks from all agents 

5. Aggregate the feedback, correct object 

reference, and generate a modified idf file and 

send it to user. 

The LLM task agents are in the similar structure with the 

engineered prompt template for people object creation. 

The only two differences are 1) the placeholder gets 

input from the central LLM agent, and 2) adding an extra 

step to return the results to LLM central agent.  

All agents are defined, coordinated, and connected 

through AutoGen framework (Wu, Bansal et al. 2023). 

Microsoft's Autogen is a platform engineered to propel 

the creation of LLM applications by facilitating multi-

agent dialogues. It allows diverse agents to engage in 

discussions with each other to address tasks, with the 

agents being adaptable, capable of conversation, and 

structured to effortlessly accommodate human 

involvement across different modes utilizing blends of 

LLMs, human contributions, and tools. 

In the case study, we use a simplified IDF file from 

EnergyPlus official document InterfaceDeveloper.pdf 

Appendix A. Simple IDF file as a starting point. The 

user’s request is shown as follows. 

Here is the idf file and I want to 1) create a 

people object for the only zone, 2) add a 

schedule for exterior lights that starts at 6:00 

PM and ends at 6:00 AM, and 3) change the R13 

layer to be R15. 

Below is the excerpt from the generated IDF file. Due to 

the page limit, we only show schedule and construction 

since the people object is already shown in 3.1.1. 

 

Schedule:Compact, 

  NewSchedule,          !- Name 

  Fraction,            !- Schedule Type Limits  

  Through: 12/31,      !- Field 1 

  For: AllDays,        !- Field 2 

  Until: 06:00,0,      !- Field 3 

  Until: 18:00,1,      !- Field 4 

  Until: 24:00,0;      !- Field 5 

… 

Exterior:Lights, 

  ExtLights,  !- Name 

  NewSchedule,  !- Schedule Name 

  5250,   !- Design Level {W} 

  AstronomicalClock, !- Control Option 

  Grounds Lights;  !- End -Use Subcategory 

… 

Material:NoMass, 

  R13LAYER,  !- Name 

  Rough,   !- Roughness 

  2.64,   !- ThermalResistance{m2K/W} 

  0.9000000,  !- Thermal Absorptance 

  0.7500000,  !- Solar Absorptance 

  0.7500000;  !- Visible Absorptance 

In terms of construction material, although it is still 

called R13Layer, the thermal resistance is updated from 

2.29 to 2.64 m2K/W (R15), which correctly reflect user 

input. For exterior lighting, the new schedule is correctly 

created and successfully applied in exterior lights. We 

observed the effectiveness of multi-agent LLM 

applications in multiple inputs generation and revisions 

for BEM, which is a common task for BEM modelers. 

Simulation Output Visualization 

The case study explores the use of the code generation 

ability of LLM in postprocessing and visualizing the 

simulation output of EnergyPlus. The object virtual 

building in the case study is a reference building: Large 

Office developed by National Renewable Energy 

Laboratory. More details of the building can be found in 

(Deru, Field et al. 2011). The simulation weather file is 

“2B_USA_AZ_PHOENIX.epw.” We use the model 



   

 

ChatGPT-4 (July 6, 2023, Version) Code Interpreter in 

this case study. The prompt is shown below, which first 

provides a background about the source of the CSV file; 

then, two visualization tasks are specified. 

I want to conduct a python-based data 

visualization based on the CSV file I uploaded. 

The file is the simulation output of EnergyPlus 

in the format of CSV. 

First, I want to generate a timeseries stack 

area plot for all enduses. Decide the color of 

each stack by your understanding of the enduses. 

For example, red for heating, and blue for 

cooling. Also, just generate one week of results 

in January. Add the correct title, axis label, 

and unit to make the plot look professional. 

Second, I want to generate a plot with subplots, 

each subplot is timeseries line plot of all the 

weather variables. Just generate two weeks of 

results in August. Add the correct title, axis 

label, and unit to make the plot look 

professional. 

Figure 2 shows the first plot LLM generated, which 

perfectly matches the description of the stacked plot for 

enduses in every aspect. It is worth mentioning that the 

year is 1900 because the timestamp in the TMY weather 

data is 1900.  

 

Figure 2. LLM generated stack area plot of enduses 

Figure 3 shows the LLM-generated subplots of weather 

conditions, which is the second visualization request in 

the prompt. The lines in the subplots are created 

correctly, but the y labels in those subplots overlap with 

each other. As a result, a follow-up prompt “the y labels 

in those subplots just overlapped with each other. Please 

refine the plot” is further sent to LLM and Figure 4 is the 

improved version, which LLM explains that it “1) rotates 

the y-labels by 45 degrees, 2) adds more spacing between 

subplots, and 3) reduces the font size of the y-labels”, 

which successfully address the overlapping problem. 

LLM exhibits remarkable accuracy and robustness in 

visualization when the users clearly understand and 

describe their visualization objectives. Besides, the 

human-in-the-loop validation process can also quickly 

address shortcomings and improve visualization quality.  

The time taken to process data and generate plots, which 

is a key index to evaluate the LLM performance, is 

significantly reduced from over 15 minutes (based on 

authors’ Python skills) to manually create a Python code 

to prepare the data for plotting and set the figure 

configurations, to less than 1 minute to create the prompt 

by describing the need. Meanwhile, the high accuracy of 

code generation as well as the fast feedback-based error-

fixing feature of LLM make the quality of visualization 

the same and even better than manual processing. 

  

Figure 3. LLM generated subplots of weather 

conditions: initial version 

 

Figure 4. LLM generated subplots of weather 

conditions: improved version 



   

 

Simulation Knowledge Extraction and Training 

In this case study, we utilize LLM to transform existing 

knowledge bases into interactive learning platforms, 

thereby optimizing the educational experience for BEM 

learners of all proficiency levels by intelligently 

generating, reorganizing, and presenting information in 

a user-friendly manner. Specifically, we use RAG 

technology to make BEMcyclopedia 

(https://bemcyclopedia.com/), a U.S. Department of 

Energy sponsored BEM information and education 

portal, more interactive with BEM learners and users. 

The diagram of RAG is shown in Figure 5. In Indexing 

Pipeline, we prepare the document by crawling texts 

from https://bemcyclopedia.com/ and chunking the 

document into pieces (paragraphs) and generates the 

embedding (vector representation) for these chunks. The 

embeddings are then added to a vector database. 

Indexing Pipeline is a one-time offline process. Next in 

the Search Pipeline, two steps are involved. Step 1: 

Vectorize the search query (question) and match it with 

the most similar text chunks from the Vector Database. 

Step 2: The LLM is fed with the question and the 

matching text chunks as context for it to process. This 

way the LLM only has to most relevant chunks and 

returns the results in a timely fashion. Since the Search 

Pipeline is an online process, the two steps are executed 

each time the user asks a question. 

 

Figure 5. Diagram of RAG to interact with 

BEMcyclopedia 

To validate the effectiveness, we compare 1) RAG, 2) 

ChatGPT (September 25, 2023, Version), and 3) manual 

search in terms of their ability to answer the questions 

related to the content in BEMcyclopedia. The question 

we design is “what is the purpose of BEMcyclopedia,” 

and the answer of RAG is shown as follows. 

The purpose of BEMcyclopedia is to serve as a 

free resource for energy modelers to learn about 

BEM and share knowledge with others. According 

to the website's About page, the online, open-

content platform intends to provide practical 

guidance to practitioners on how, when, and why 

to apply BEM at various stages of the design 

process and how to use such analyses to inform 

design decisions. The content is organized into 

two main sections: (1) "Learn by Design Task" 

which is a collection of educational resources 

organized around a typical building design 

project's timeline, and (2) "Essential BEM 

Concepts" which is a collection of general 

knowledge and fundamental skills applicable to 

various BEM tasks. The site's scope is focused 

on building performance analysis, with a 

specific emphasis on energy and emissions. 

This answer is very comprehensive and include content 

across many parts of BEMcyclopedia. When we ask 

ChatGPT, the answer is shown as follows. 

As of my last update in September 2023, I don't 

have any information about a "BEMcyclopedia." 

It's possible that it is a specific resource or 

tool that has been developed after that date, 

or it could be a niche or specialized resource 

that hasn't been widely covered in publicly 

available data. 

Obviously, GPT-4 model has not included 

BEMcyclopedia into its training process， which further 

showcases the advantage of RAG of including the latest 

knowledge. In terms of the manual search, we can find 

in the webpage that  

BEMcyclopedia was created as a free resource for 

energy modelers to learn about BEM, and to share 

their knowledge with others 

which is far less comprehensive than the answer from 

RAG. 

This method can be further extended to 1) BEM software 

documentations such as EnergyPlus Input Output 

Reference, and 2) a combination of multiple BEM 

training and documentation resources. 

It's important to note that LLM-based search platforms 

like bing.com/chat utilize GPT-4 alongside internet 

search capabilities to produce precise results, similar to 

those of RAG. However, when dealing with local private 

data, RAG holds distinct advantages over all other 

methods discussed in this section. 

Results and Discussion 

Highlighted Observations 

This paper explores the potential applications of LLM in 

BEM. The case studies are designed to provide a 

preliminary examination of each topic. Based on our 

findings, several observations are highlighted. First, the 

case studies illustrate the efficacy of incorporating LLMs 

in various BEM tasks. Visualization of simulation output 

was particularly successful due to LLM's adept code 

generation capabilities, simplifying data analysis and 

plotting with Python code. Knowledge extraction and 

training from simulations required the use of RAG, 

adding another layer of complexity. The most intricate 

task was simulation input generation, which demanded 

the integration of multiple LLMs with prompt templates 

to create a multi-agent system for modifying IDF files. 

Overall, despite their preliminary nature, all case studies 

https://bemcyclopedia.com/
https://bemcyclopedia.com/


   

 

were successfully executed and achieved their intended 

outcomes. 

Second, the case studies demonstrate that selecting the 

right LLM techniques is essential to enhance 

performance and reduce engineering efforts. Besides 

direct use of LLM, three LLM techniques were utilized: 

1) prompt engineering, 2) RAG, and 3) multi-agent 

LLMs. The complexity and nature of tasks dictate the 

selection of appropriate LLM techniques. As highlighted 

in Simulation Knowledge Extraction and Training, RAG 

proved superior to the direct use of LLM. Researchers 

and engineers should pinpoint the most effective 

approach among LLM techniques for varied tasks, rather 

than uniformly applying a single method. In summary, 

for tasks involving code generation, directly utilizing 

LLMs typically suffices. When external knowledge is 

necessary, employing RAG and fine-tuning can 

effectively handle the task at hand. For more complex, 

multi-step, and hierarchical processes, well-designed 

prompt engineering and potentially the use of multi-

agent LLMs are recommended to navigate the intricacy. 

Observed Limitations 

While the results are promising, certain limitations are 

evident. First, LLMs require significant computational 

power, leading to high energy consumption and potential 

financial burdens, especially when dependent on API-

based solutions or necessitating investment in 

computational hardware like Graphics Processing Units. 

However, the landscape is changing rapidly, with 

technological advancements ushering in more efficient 

and cost-effective LLMs. A prime example is the Llama-

2 (Touvron, Martin et al. 2023) 7B version, which holds 

the promise of broadening accessibility and application 

across diverse fields with low computation cost. 

Second, self-consistency issue, the tendency of the 

model to provide different or contradictory responses to 

the same query, was identified as a challenge affecting 

the reliability and accuracy of the results. In the case 

studies, we addressed this issue by adjusting the 

"temperature" parameter of the LLM to zero, although 

further discussions on alternative solutions were beyond 

our scope. BEM professionals should remain vigilant 

and account for these potential inconsistencies when 

leveraging LLMs in applications requiring high 

accuracy. Research efforts are actively underway to 

fundamentally improve the self-consistency of LLMs 

(Wang, Wei et al. 2022). These theoretical advancements 

are crucial in paving the way for more reliable LLMs. 

However, practical measures are just as vital. Employing 

continuous validation, corroborating with additional data 

sources, and seeking expert insights are key strategies to 

mitigate uncertainties and bolster the reliability of results 

derived from LLMs. 

Third, the lack of discussion on fine-tuning is a 

significant limitation of this study. Fine-tuning is a vital 

aspect of LLMs, especially for tasks that require in-depth 

domain knowledge. This process involves refining the 

model on specialized datasets to enhance its 

performance. A notable example is the development of 

BloombergGPT (Wu, Irsoy et al. 2023), which is a 

specialized LLM for the financial sector, trained on a 

diverse range of financial data. The idea of creating a 

similar model, such as "BEMGPT," is intriguing and 

holds potential for the field of BEM by eliminating the 

need for RAG and prompt engineering, which reduces 

computation cost and engineering effort. However, fine-

tuning is even more computationally demanding and 

poses significant challenges in data design and 

preparation for training. The creation of a domain-

specific model like 'BEMGPT' would require 

meticulously curated datasets that accurately represent 

the complexities of BEM. This necessity to refine and 

adapt LLMs to the specific needs of BEM through fine-

tuning presents an important future research direction 

worth exploring. 

Fourth, we acknowledge the oversight in addressing the 

challenges associated with processing long sequences of 

prompts and managing substantial volumes of formatted 

text inputs in LLM applications for BEM, especially the 

application of the simulation input generation. This gap 

highlights a critical area for future research. To mitigate 

these issues, future work could explore the 

implementation of a multi-agent LLM framework. Such 

a system, featuring a central agent for segmenting 

extensive text into smaller portions for individual 

processing and subsequent aggregation, could 

significantly enhance the handling of large-scale text 

inputs. Furthermore, RAG can include huge amount of 

external information outside of LLM prompts, which 

will not be limited by the input length and token limit. 

Additionally, many LLMs can also expand their context 

window to a large capacity. For example, Claude 2.1 

supports up to 200K tokens and GPT4 up to 128K. This 

greatly increases the amount of information the LLMs 

can intake as prompts. The real limitation of token limit 

comes in the number of tokens the LLMs can output, 

which is typically set to 4,096. The existing approach to 

tackle the output token limitation is to ask the LLMs to 

"continue" the previously generated text, and given that 

the input token limit is large, the LLMs can generate long 

output with multiple runs. 

Conclusion 

This paper explores the integration of LLMs in BEM by 

examining potential applications identified through a 

literature review of various modeling techniques. The 

paper highlights the potential of LLMs to address the 



   

 

significant reliance on expert knowledge in BEM, 

proposing applications including 1) simulation input 

generation, 2) simulation output analysis and 

visualization, 3) conducting error analysis, 4) co-

simulation, 5) simulation knowledge extraction and 

training, and 6) simulation optimization. 

In case studies, we observed their effectiveness across a 

range of tasks, from simplifying data analysis with code 

generation, to integrating multiple LLMs in a multi-

agent system for intricate simulation input generation. 

Crucially, selecting the right technique—be it direct use, 

prompt engineering, RAG, or multi-agent systems—is 

paramount to optimize performance and minimize 

engineering efforts. While LLMs present immense 

promise, there are challenges, including their significant 

computational demands and potential self-consistency 

issues. However, ongoing technological advancements 

and research efforts are actively addressing these 

limitations, thereby broadening the scope and ease of 

LLM applications in diverse fields. 

In the future, the integration of LLM and BEM will play 

a crucial role in advancing sustainable and energy-

efficient building designs. Collaborative research 

between AI and building modelers is key to effectively 

utilizing LLMs in enhancing BEM. This 

interdisciplinary approach will address the gap between 

LLM capabilities and the specific needs of BEM, 

leveraging domain-specific knowledge from model 

experts alongside the expertise of AI specialists in 

complex LLM modeling. Although much of AI expertise 

is currently focused on sectors like medical science and 

commerce, establishing incentives and raising awareness 

is necessary to redirect attention and contributions from 

AI experts to the building sector. The creation of 

specialized LLMs, such as "BEMGPT," specifically 

tailored for BEM, holds promise for the future of 

sustainable building solutions. 

Nomenclature 

AI: artificial intelligence  

API: Application Programming Interface 

BEM: building energy modeling 

HVAC: heating, ventilation, and air conditioning 

IDD: input data dictionary 

IDF: input data file 

LLM: large language model 
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